If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+12w-144=0
a = 6; b = 12; c = -144;
Δ = b2-4ac
Δ = 122-4·6·(-144)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-60}{2*6}=\frac{-72}{12} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+60}{2*6}=\frac{48}{12} =4 $
| 18x+9=2x-7 | | x+1+x+4+x=51 | | (x-3)5-1=(x-5)4 | | 1000=x(15-2x)(60-2x) | | X+x+4(x+2)=-28 | | -4(b-1)=-6b+3(-2b+4) | | .80x+0.05(12-x)=0.10(96) | | 7+3(2g-6=-29 | | -5w^2-3w+2=0 | | 5/4x-1=1/4+7 | | 5x+7(3)=39-x | | 5-2x=-4x=9 | | 10x^2+4x-218=0 | | x(x+2)=(x+2) | | (x*x*x)+(39x)+70=0 | | 0.2=0.6(8-x) | | 3v-+12=15 | | 5x+4=22-3 | | (49)y−12=(41)y−4 | | 5-(5x-10)=25(x-2) | | 6(-4+5x)=36 | | (X^3)+(39x)+70=0 | | 20x-2x+50+85=180 | | 3x^2=6x-1=0 | | -10x+4x-2x=-24 | | 104x2+99x-180=0 | | 28.5714=2^2t | | 140-(6x+7)=6(x+7)+x | | 6x/24=42/24 | | 6(-1/6(x-18)+1/3(x+3))=6(x+14) | | -8(x-2)=-16 | | 25x-9-15x+4=20x-6-10x+11 |